AG百家乐代理-红桃KAG百家乐娱乐城

Research News

Research team of Dr. Wei Chi and Dr. Youjin Hu from Zhongshan Ophthalmic Center discovered novel molecular biomarkers in monocyte subsets for VKH disease

Share
  • Updated: Nov 4, 2020
  • Written:
  • Edited:
Source: Zhongshan Ophthalmic Center
Written by: Zhongshan Ophthalmic Center
Edited by: Tan Rongyu, Wang Dongmei

Vogt–Koyanagi–Harada (VKH) disease is one of the common sight-threatening uveitis entities in the Asian population and carries a high risk of blindness. It is a systemic refractory autoimmune disease, affecting multiple organs and characterized by bilateral granulomatous panuveitis and systemic disorders, including leukoderma, paratrichosis, and various central nervous system and auditory signs. While the clinical features and diagnostic criteria are well described, the pathogenesis of VKH disease remains unclear. Moreover, there are currently no reliable disease-specific biomarkers to objectively and accurately evaluate the in vivo immune status at different disease stages and predict the response to treatment.

Recently, a research team directed by Dr. Wei Chi and Dr. Youjin Hu from Zhongshan Ophthalmic Center discovered a pathogenic subpopulation of monocyte that was activated in VKH and ISG15 can serve as a biomarker for the diagnosis of VKH syndrome. The research paper entitled "Genetic landscape and autoimmunity of monocyte in developing Vogt-Koyanagi-Harada disease" was published online on September 28, 2020, as a research article in PNAS.

The study identified six populations with two previously unreported subsets according to similarities and differences in transcriptome profiles: 1) The S100A12 monocytes represented the commonalities among CD14high monocytes and expressed hallmark proinflammatory. 2) HLA monocytes expressed the MHC Class II molecules LGALS2 and CPVL. 3) CD16 monocytes were a nonclassical population. 4) Proinflammatory monocytes presented a unique combination of genes, including chemokine ligands, interleukins, and nod-like receptors associated with virus infection, the inflammatory process, and pyroptotic cell death mediators. 5) Megakaryocyte-like monocytes expressed genes similar to megakaryocyte progenitors (including PPBP and PF4). 6) NK cell-like monocytes expressed a cytotoxic gene signature and shared other differentially expressed genes with NK cells.


 
Fig. 1. Clustering analysis of blood monocytes and cell population identification.



Fig. 2. Single-cell profiling of human circulating monocytes.

Among the subpopulations, proinflammatory monocytes demonstrated the greatest gene expression changes in the acute stage of VKH disease, suggesting that phenotypic alterations of this subpopulation may be related to VKH disease development.


 
Fig. 3. Mapping monocyte atlas of VKH patients compared with the healthy controls.

Although clinical measures can monitor disease activity and treatment response, such as fluorescein fundus angiography (FFA) and optical coherence tomography (OCT), these assessments yield little information on pathogenic processes, immune status, or the mechanisms underlying treatment responses. To identify a blood-based index of VKH disease, they examined IFN-stimulated gene 15 (ISG15), which specifically highly expressed in the proinflammatory monocytes, and found that ISG15 expression was up-regulated predominantly in the monocyte from VKH patients and the level of ISG15 in VKH patients was normal after 3 mouths treatment, suggested production of ISG15 might monitor disease activity and therapeutic response.

 
Fig 4. The production of ISG15 in VKH patients was reduced after immunosuppressive therapy.

Dr. Youjin Hu, Ph.D. student Yixin Hu and M.S. student Yuhua Xiao are the first authors. Dr. Wei Chi is the corresponding author. This work was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and grants from the Science and Technology Program of Guangzhou.

Link to the paper: https://www.pnas.org/content/early/2020/09/25/2002476117
TOP
百家乐侧牌器| 现金百家乐攻略| 明升88娱乐城| 百家乐官网三路法| 百家乐博赌场娱乐网规则| 12bet备用| 百家乐官网策略与心得| 博彩百家乐官网字谜总汇二丹东| 百家乐翻天下载| 百家乐官网大小是什么| 网上玩百家乐的玩法技巧和规则| 澳门百家乐官网心得玩博| 缅甸百家乐博彩真假| 战神娱乐城| 百家乐之对子的技巧| k7娱乐城| 百家乐官网打印机破解| 棋牌百家乐有稳赚的方法吗| 百家乐官网软件l柳州| 真人百家乐分析软件是骗局| 现金网系统出租| 百家乐官网平客户端| 元游棋牌官网| 新世纪百家乐官网的玩法技巧和规则| 博彩行业| 百家乐游戏机在哪有| bet365 体育在线uo| 战胜百家乐官网的技巧| 百家乐官网走势图解| 威尼斯人娱乐城真人游戏| 百家乐官网猪仔路| 1737棋牌游戏中心| 百家乐对子计算方法| 百家乐官网玩法开户彩公司| 亚洲顶级赌场手机版| 缅甸百家乐官网网络赌博解谜| 德州扑克 梭哈| 郑州太阳城宾馆| 新全讯网22335555| 如何玩百家乐赢钱技巧| 百家乐英皇娱乐场|