AG百家乐代理-红桃KAG百家乐娱乐城

Research News

Prof. Shaolin Peng’s Group in School of Life Sciences identified arbuscular mycorrhizal facilitation on plant invasion is nutrient dependent

Source: School of Life Sciences
Written by: School of Life Sciences
Edited by: Xu Jia, Wang Dongmei

Recently, a research article entitled “Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration” has been published online in New Phytologist (IF5Y=8.344). This study highlights that the promoting effects of arbuscular mycorrhizal (AM) fungi on the plant invasion is soil phosphorus (P) concentration dependence. Prof. Shaolin Peng from the School of Life Sciences at Sun Yat-sen University is the corresponding author, and PhD student Enjian Chen is the first author.


Figure: A hypothetical conceptual model of the differential arbuscular mycorrhizal (AM) effects on the competition between native and invasive plants affected by phosphorus (P) concentration. An increase in P shifts the AM effects on native (dashed line) and invasive (solid line) plants from positive to negative (a). With competition (b), lower AM colonization on native plants weakens the AM effects on the native but not the invasive plants. Invasive plants experience more positive AM effects (red area) under low-P concentrations, but more negative AM effects (blue area) under high-P concentrations than native plants.

The invasion success of some exotic plants depends on the associations with arbuscular mycorrhizal fungi, which range along a continuum from strong mutualism to parasitism frequently affected by soil phosphorus availability. It is unclear how P availability shifts AM associations on native and invasive plants, which in turn influence their competition. In this work, a three-factor common garden experiment was conducted, including manipulations of P availability, AM fungi occurrence and interspecific competition to evaluate how AM fungi influence competition between two pairs of invasive and native plants under different P availabilities. The results showed that P enrichment reduced positive AM effects on the growth of both native and invasive plants (Figure a). Competition had no effect on AM colonization on the invasive plants, but reduced AM colonization on the native plants, which led invasive plants to receive greater AM benefits under low-P concentrations, but expose to stronger AM detriments under high-P concentrations compared to the native competitors (Figure b). Therefore, the competitive advantage of invasive vs native plants was enhanced by AM fungi under low-P concentrations, but weakened under high-P concentrations.

This work proposes a new idea of controlling alien plant invasion by changing the symbiotic relationship between soil microorganisms and plants, and predicts that the promoting effects of AM fungi on plant invasion will be further increased for a greater shortage of P under nitrogen deposition.

This work was supported by the National Natural Science Foundation of China (NSFC 31700450, NSFC 31971556), Special Funds of Guangdong Province for Promoting Economic Development (For the Development of Marine Economy, GDME?2018E002), Vegegraphy of China (2015FY210200-13), Zhang Hongda Science Foundation and Fu Jia-Rui Scholarship in Sun Yat-sen University

Link to the paper: https://doi.org/10.1111/nph.16359
网络百家乐官网游赌博| 百家乐官网技巧大全| 娱乐网百家乐的玩法技巧和规则| 百乐坊娱乐场| 新天地百家乐官网的玩法技巧和规则| bet365最新地址| 百家乐娱乐人物| bet365备用网址器| 网上玩百家乐犯法| 圣淘沙百家乐官网现金网| 金公主百家乐现金网| 皇冠走地| 网上真钱斗地主| 博发百家乐官网的玩法技巧和规则| 超级皇冠网分布图| 免费百家乐统计工具| 网上百家乐看牌器| 澳门百家乐官网娱乐注册| 香港六合彩管家婆| 棋牌赌博网站| 玩百家乐新澳门娱乐城| 澳门百家乐官网图形| 明升国际网址| 百家乐博彩平台| 网站百家乐官网假| 真人百家乐官网视频赌博| 余姚市| 吉水县| 正网开户| 百家乐变牌器| 百家乐官网是不是有技巧| 真钱百家乐赌博| 大发888在线娱乐百家乐| 噢门百家乐注码技巧| 运城百家乐官网的玩法技巧和规则| 百家乐官网出千赌具| 大发888 软件| 广发百家乐的玩法技巧和规则| 新锦江百家乐官网的玩法技巧和规则 | 威斯汀百家乐的玩法技巧和规则| 百家乐稳赚的方法|